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Abstract
Using its multiple integral representation, we compute the large distance
asymptotic behaviour of the emptiness formation probability of the XXZ spin-
1
2 Heisenberg chain in the massless regime.

PACS numbers: 71.45.G, 75.10.Jm, 11.30.Na, 03.65.Fd

1. Emptiness formation probability at large distance

The Hamiltonian of the XXZ spin- 1
2 Heisenberg chain is given by

H =
M∑

m=1

(
σx

mσx
m+1 + σy

mσ
y

m+1 + �
(
σ z

mσ z
m+1 − 1

))
. (1.1)

Here � is the anisotropy parameter, and σ
x,y,z
m denote the usual Pauli matrices acting on

the quantum space at site m of the chain. The emptiness formation probability τ (m) (the
probability of finding in the ground state a ferromagnetic string of length m) is defined as the
following expectation value

τ (m) = 〈ψg |
m∏

k=1

1 − σ z
k

2
|ψg〉 (1.2)

where |ψg〉 denotes the normalized ground state.
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The methods based on the q-vertex operator approach [1–3] and the algebraic Bethe ansatz
[4, 5] allow us to express the general correlation function of this model, in the thermodynamic
limit (M → ∞), as multiple integrals. In this framework, the emptiness formation probability
τ (m) of the XXZ chain is given as an integral with m integrations. The limit � → 1 (XXX

case) of the representation for τ (m) following from [1] was given in [6]. The first evaluation
of the multiple integral for the emptiness formation probability with arbitrary m has been
performed in [7] for the special case � = 0 (free fermions).

Recently, in [8], a new multiple integral representation for τ (m) was obtained. It leads in
a direct way to the above-mentioned answer at � = 0 [9], in particular using a saddle-point
method. This new representation also allows us to obtain the first exact result for the emptiness
formation probability (for arbitrary m) outside the free fermion point (namely at � = 1

2 ) [10],
a formula first conjectured in [11].

The purpose of this letter is to present an analytical evaluation of the asymptotic behaviour
of τ (m) at large distance m, in the massless regime −1 < � < 1, via the saddle-point method
applied to the new multiple integral representation [8]. We find

lim
m→∞

log τ (m)

m2
= log

π

ζ
+

1

2

∫
R−i0

dω

ω

sinh ω
2 (π − ζ ) cosh2 ωζ

2

sinh πω
2 sinh ωζ

2 cosh ωζ
(1.3)

where cos ζ = �, 0 < ζ < π . If ζ is commensurate with π (in other words if eiζ is a root
of unity), then the integral in equation (1.3) can be taken explicitly in terms of the ψ-function
(a logarithmic derivative of the �-function). In particular, for ζ = π

2 and ζ = π
3 (respectively

� = 0 and � = 1/2) we obtain from equation (1.3)

lim
m→∞

log τ (m)

m2
= −1

2
log 2 � = 0

lim
m→∞

log τ (m)

m2
= 3

2
log 3 − 3 log 2 � = 1

2

(1.4)

which coincides with the exact known results obtained respectively in [7, 9, 12] and in [10, 11].
For the particular case of the XXX chain (� = 1, ζ = 0) the asymptotic behaviour can also
be evaluated by the saddle-point method and it is given by

lim
m→∞

log τ (m)

m2
= log

(
�

(
3
4

)
�

(
1
2

)
�

(
1
4

)
)

≈ log(0.5991) (1.5)

which is in good agreement with the numerical result log(0.598), obtained in [13].
In the following, we explain the main features of our method. A more detailed account

of the proofs and techniques involved will be published later.

2. The saddle-point method

The multiple integral representation for τ (m) obtained in [8] can be written in the form

τ (m) =
(

i

2ζ sin ζ

)m (
π

ζ

) m2−m
2

∫
D

dmλF({λ},m)

×
m∏

a>b

sinh π
ζ
(λa − λb)

sinh(λa − λb − iζ ) sinh(λa − λb + iζ )

×
m∏

a=1

(
sinh

(
λa − iζ

2

)
sinh

(
λa + iζ

2

)
cosh π

ζ
λa

)m

(2.1)
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with

F({λ},m) = lim
ξ1,...,ξm→− iζ

2

1∏m
a>b sinh(ξa − ξb)

detm

( −i sin ζ

sinh(λj − ξk) sinh(λj − ξk − iζ )

)
. (2.2)

Here the integration domain D is −∞ < λ1 < λ2 < · · · < λm < ∞.
To estimate the integral equation (2.1) we use the saddle-point method. Although this

method is not completely rigorous from the mathematical point of view, it is widely used and
is known to give sensible answers. Moreover, as already discussed in section 1, it will give in
our case an explicit formula in complete agreement with the exact known answers for ζ = π

2
and ζ = π

3 (respectively � = 0 and � = 1/2).
Following the standard arguments of the saddle-point approach we estimate the integral

in equation (2.1) by the maximal value of the integrand. Let {λ′} be the set of parameters
corresponding to this maximum. They satisfy the saddle-point equations and for large m we
assume that their distribution can be described by a density function ρ(λ′):

ρ(λ′
j ) = lim

m→∞
1

m(λ′
j+1 − λ′

j )
. (2.3)

Thus for large m, we can replace sums over the set {λ′} by integrals. Namely, if f (λ) is
integrable on the real axis, then

1

m

m∑
j=1

f (λ′
j ) →

∫ ∞

−∞
f (λ)ρ(λ) dλ

1

m

m∑
j=1
j �=k

f (λ′
j )

λ′
j − λ′

k

→ V.P.

∫ ∞

−∞

f (λ)

λ − λ′
k

ρ(λ) dλ

m → ∞. (2.4)

Due to equation (2.4) it is easy to see that in the point λ′
1, . . . , λ

′
m the products in the second

line of equation (2.1) behave as exp(cm2).
Our goal is now to estimate the behaviour of the term F({λ′},m). To do this we factorize

the determinant in equation (2.2) as follows for large m

detm

(
−i sin ζ

sinh(λ′
j − ξk) sinh(λ′

j − ξk − iζ )

)

−→ (−2π i)m detm

(
δjk − K(λ′

j − λ′
k)

2π imρ(λ′
k)

)
detm

(
i

2ζ sinh π
ζ
(λ′

j − ξk)

)
(2.5)

with

K(λ) = −i sin 2ζ

sinh(λ − iζ ) sinh(λ + iζ )
. (2.6)

Indeed, for m → ∞ and −ζ < Im ξk < 0 we have

detm

(
δjk − K(λ′

j − λ′
k)

2π imρ(λ′
k)

)
detm

(
i

2ζ sinh π
ζ
(λ′

j − ξk)

)

= detm

(
i

2ζ sinh π
ζ
(λ′

j − ξk)
−

m∑
l=1

K(λ′
j − λ′

l )

2π imρ(λ′
l)

i

2ζ sinh π
ζ
(λ′

l − ξk)

)

−→ detm

(
i

2ζ sinh π
ζ
(λ′

j − ξk)
−

∫ ∞

−∞

K(λ′
j − µ)

2π i

i dµ

2ζ sinh π
ζ
(µ − ξk)

)

=
(

1

2π

)m

detm

(
sin ζ

sinh(λ′
j − ξk) sinh(λ′

j − ξk − iζ )

)
. (2.7)
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Here we have used the fact that the function i/2ζ sinh π
ζ
(λj − ξ) solves the Lieb integral

equation for the density of the ground state of the XXZ magnet [14] (and we have used the
notations of [8]). The second determinant on the right-hand side of equation (2.5) is a Cauchy
determinant, hence

F({λ′},m) = (−i)m
(

π

ζ

) m2+m
2

∏m
a>b sinh π

ζ
(λ′

a − λ′
b)∏m

a=1 coshm π
ζ
λ′

a

detm

(
δjk − K(λ′

j − λ′
k)

2π imρ(λ′
k)

)
. (2.8)

The behaviour of the determinant in equation (2.8) can be estimated via the Hadamard
inequality

|detm(ajk)| � (max |ajk|)mm
m
2 (2.9)

applied to the above determinant and to the determinant of the inverse matrix, which shows
that

lim
m→∞

1

m2
log detm

(
δjk − K(λ′

j − λ′
k)

2π imρ(λ′
k)

)
= 0. (2.10)

The previous equation means that detm(δjk − K(λ′
j − λ′

k)/2π imρ(λ′
k)) does not contribute

to the leading term of the asymptotic behaviour. Hence, it can be excluded from our
present considerations. Note however that this determinant will contribute to the sub-leading
corrections.

Thus, the emptiness formation probability behaves as

τ (m) −→
(

π

ζ

)m2

em2S0+o(m2) m → ∞ (2.11)

with

S0 ≡ S({λ′}) = 1

m2

m∑
a>b

log

(
sinh2 π

ζ
(λ′

a − λ′
b)

sinh(λ′
a − λ′

b − iζ ) sinh(λ′
a − λ′

b + iζ )

)

+
1

m

m∑
a=1

log

(
sinh(λ′

a − iζ/2) sinh(λ′
a + iζ/2)

cosh2 π
ζ
λ′

a

)
. (2.12)

Here the parameters {λ′} are the solutions of the saddle-point equations
∂S0

∂λ′
j

= 0. (2.13)

In our case the system equation (2.13) has the form

2π

ζ
tanh

πλ′
j

ζ
− coth(λ′

j − iζ/2) − coth(λ′
j + iζ/2)

= 1

m

m∑
k=1
k �=j

(
2π

ζ
coth

π

ζ
(λ′

j − λ′
k) − coth(λ′

j − λ′
k − iζ ) − coth(λ′

j − λ′
k + iζ )

)
.

(2.14)

Using equation (2.4) we transform equation (2.14) into the integral equation for the density
ρ(λ)

2π

ζ
tanh

πλ

ζ
− coth(λ − iζ/2) − coth(λ + iζ/2)

= V.P.

∫ ∞

−∞

(
2π

ζ
coth

π

ζ
(λ − µ) − coth(λ − µ − iζ )

− coth(λ − µ + iζ )

)
ρ(µ) dµ. (2.15)
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Respectively, the action S0 takes the form

S0 =
∫ ∞

−∞
dλρ(λ) log

(
sinh(λ − iζ/2) sinh(λ + iζ/2)

cosh2 π
ζ
λ

)

+
1

2

∫ ∞

−∞
dµ dλρ(λ)ρ(µ) log

(
sinh2 π

ζ
(λ − µ)

sinh(λ − µ − iζ ) sinh(λ − µ + iζ )

)
. (2.16)

Since the kernel of the integral operator in equation (2.15) depends on the difference of the
arguments, this equation can be solved via Fourier transform. Then

ρ̂(ω) =
∫ ∞

−∞
eiωλρ(λ) dλ = cosh ωζ

2

cosh ωζ
. (2.17)

Performing the inverse Fourier transform we find

ρ(λ) =
cosh πλ

2ζ

ζ
√

2 cosh πλ
ζ

(2.18)

which obviously satisfies the necessary normalization condition for density (the integral
on the real axis equals one). It remains to substitute equations (2.17) and (2.18) into
equation (2.16), and after straightforward calculations we arrive at

S0 = 1

2

∫
R−i0

dω

ω

sinh ω
2 (π − ζ ) cosh2 ωζ

2

sinh πω
2 sinh ωζ

2 cosh ωζ
. (2.19)

Thus, we have obtained equation (1.3).
In the case of the XXX chain (� = 1) we should rescale λj → ζλj , ξj → ζ ξj in the

original multiple integral representation equation (2.1) for τ (m) and then proceed to the limit
ζ → 0. The remaining computations are then very similar to those described above, therefore
we present here only the main results. The behaviour of τ (m) is now given by

τ (m) −→ πm2
em2S0+o(m2) m → ∞. (2.20)

The action S0 in the saddle point has the form

S0 =
∫ ∞

−∞
log

(
(λ − i/2)(λ + i/2)

cosh2 πλ

)
ρ(λ) dλ

+
1

2

∫ ∞

−∞
dµ dλρ(λ)ρ(µ) log

(
sinh2 π(λ − µ)

(λ − µ − i)(λ − µ + i)

)
. (2.21)

The analogue of the integral equation (2.15) in the XXX case is

2π tanh πλ − 2λ

λ2 + 1
4

= V.P.

∫ ∞

−∞

(
2π coth π(λ − µ) − 2(λ − µ)

(λ − µ)2 + 1

)
ρ(µ) dµ. (2.22)

The solution of this equation is

ρ(λ) = cosh πλ
2√

2 cosh πλ
. (2.23)

Substituting equation (2.23) into equation (2.21) we finally arrive at equation (1.5).
In conclusion we would like to mention that in this letter we have focused our attention

only on the rate of the Gaussian decay of the emptiness formation probability and we have
not discussed the corrections to this driving term of the asymptotic behaviour. Nevertheless,
according to our preliminary analysis, the saddle-point method seems also to be fruitful for the
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evaluation of such sub-leading terms. Such corrections come from various sources including
the determinant in equation (2.8), the usual saddle-point corrections due to the determinant of
the matrix of second derivatives of S0, and also from the replacement of sums with integrals.
This question is now being studied.

After we submitted this letter to the hep-th preprint archive [15], another paper appeared
[16] also dealing with the asymptotic behaviour of the emptiness formation probability τ (m).
There the authors conjectured, in addition to the same Gaussian decay described in our work,
a formula for the exponent giving a power-law correction to the above asymptotic behaviour
of τ (m), these predictions being supported by numerical simulations (the Density Matrix
Renormalization Group (DMRG) and Monte Carlo methods).
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